

شار مغناطيسى

 سيمهيّج يا مدار عبور مى كند طبق رابطهى زير قابل محاسبه است : مساحت يك حالته (mºr

ميدان مغناطيسى(T)

شار مغناطيسى بيشينه

وقتى سيم يّتج عمود بر ميدان مغناطيسى است، شار مغناطيسى ما كزيمب مى مباشد. (سطح سيم بیج عمود بر ميدان) $\Rightarrow \theta=\cdot^{\circ}$ م $1 \wedge \cdot{ }^{\circ} \Rightarrow|\operatorname{Cos} \theta|=1 \Rightarrow \varphi_{\max }= \pm A B$

شار مغناطيسى صفر
-r
وقتى سيمپیتج موازى ميدان مغناطيسى باشد، شار مغناطيسى عبورى برابر صفر است. (سيم پي

قانون فارادى

-4
 آن برقرار مى شود بهطورى كه بز گیى نيروى محر كهى القا شده متناسب با آهنگی تغيير شار است. $\varepsilon=-\frac{\mathrm{d} \varphi}{\mathrm{dt}}$

$$
\text { در اين رابطه ع بر حسبب ولت، } \frac{d \varphi}{d t} \text { بر حسب وبر بر ثانيه است. }
$$

 عامل بهو جود آو رنده خود (تغيير شار) مـخالفت مى كند.

محاسبهى نيروى محر كهى القايى متو سط و لحظهاى
از تر كيب دو قانون فارادى و لنز، فرمولها از رابطهى زير بهدست مى آيد:
 (S) تعداد حلقه هاى پيچه ، ($\frac{\mathrm{wb}}{\mathrm{s}}$)

V- نكته: در مواردى كه حر كت باءث تغيير شار مىشود، قانون لنز مانند نيروى اصطكاك عمل كرده و در مقابل حر كت مقاومت نشان مى دهد.

رو شهاى ايجاد تغيير شار در يـى مدار

 زوايهى بين سوى ميدان مغناطيسى و نيمخط عمود بر صفـحه (\#)، شار تغيير نموده و باءث ايجاد نيروى محر كهى القايى در يـى مدار بستهى رسانا خواهد شد .

تشريح قانون لنز

 ناميده و با BL نشان مى دهيم.

 اگر شار گاهش يابد با ايجاد ميدان القايى در جهـت ميدان اصلى، با كاهش شار مخالفت خواهد كرد.

حركت سيم رسانا در ميدان
وقتى ميلهاى رسانا بهطول 1 در امتداد عمود بر ميدان مغناطيسى يكنواخت مغناطيسى به حر كت درآيد، نيروى محر كهاى در دو سر آن القا خواهد شد . $\varepsilon=\mathrm{LVB}$

سوى جريان القايى در ميله

اگر چهار انگشت دست راست، سوى حر كت ميله (V) و جمع شدن انگشتان به سمت ميدان باشد، انگشت شست سوى جريان القايى را نشان خواهـ اهد داد
 به انتهاى مثبت (پ̈انسيل بيشتر) جريان خرين خواهد يافت.

نيروى محركهى خود القايى

 متحاسبه است:
مدت تغيير جريان(ثانيه)
جهت نيروى محركهى خود

 خو دالقايى همجهت نير وى مـحر كهى اصلى مدار (نيروى مـحر كهى مولدها) ايـجاد مى شود.

ضريب خودالقايى سيملوله

ضريب خود القايى سيم «يتّ (L) كميتى است كه فقط به مشخخصات ساختمانى سيملوله بستگى دارد و با با تغييرات شدت
 حلقه، طول سيمبيّج و جنس هسته) از رابطهى زير قابل محاساسبه است.

انرزى مغناطيسى ذخيره شده در يك سيمييج
 مغناطيسى ذخيره مى شود كه طبق رابطهى زير قابل مـحاسبه است. (ز) $\leftarrow \mathrm{U}=\frac{1}{r} \mathrm{LI}^{r} \Rightarrow \Delta \mathrm{U}=\frac{1}{r} \mathrm{~L}\left(\mathrm{I}_{\mathrm{r}}^{r}-\mathrm{I}_{\mathrm{I}}^{r}\right)$

مولد جريان متناوب

$$
\begin{aligned}
& \varphi=\mathrm{BACos}(\omega \mathrm{t}) \Rightarrow \varphi=\varphi_{\mathrm{m}} \operatorname{Cos} \omega \mathrm{t} \quad \omega=\frac{r \pi}{\mathrm{~T}}=r \pi \nu \\
& \varepsilon=-\mathrm{N} \frac{\mathrm{~d} \varphi}{\mathrm{dt}} \Rightarrow \varepsilon=\mathrm{NBA}(\omega) \operatorname{Sin}(\omega \mathrm{t}) \Rightarrow \varepsilon=\varepsilon_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \\
& \varepsilon_{\mathrm{m}}=\mathrm{NBA} \omega
\end{aligned}
$$

جريان القايى متناوب

طبق رابطهى مى باشد. يعنى و قتى •

IV

 پّس نيروى مـحر كهى القايیى كل برابر است با تعدا نـاد حقلهها ضر بـ در نيروى محر كهى القايى هر حلقه. $\varepsilon=-\mathrm{N} \frac{\mathrm{d} \varphi}{\mathrm{dt}}$
^1- يكاى خو دالقايى (هانرى)
 يكى ولت در آن القا شود.

ا- حلقهاى به مساحت ($\overrightarrow{\text { B }}$ مغناطيسى كه از سطح حلقه مى گذارد، چهدقدر تغيير می كند؟
$\mathrm{A}=0 \cdot \mathrm{~cm}^{r}=\Delta \times 1 \cdot \cdot^{-\mu} \mathrm{m}^{r}$
$\theta=\cdot$
$\Delta \mathrm{B}=\cdot / / \mathrm{T}$$\quad\left\{\begin{array}{l}\Delta \Phi=(\Delta \mathrm{B}) \mathrm{A} \operatorname{Cos} \theta \\ \Delta \Phi=(\cdot / r) \times \Delta \cdot \times 1 \cdot{ }^{-\mu} \times 1=1 / \Delta \times 1 \cdot{ }^{-r} \mathrm{wb}\end{array}\right.$

 القايى متوسط در حلقه را حساب كنيد.
$\mathrm{N}=1$
$r \mathrm{R}=\mathrm{r} \cdot \mathrm{cm} \Rightarrow \mathrm{R}=1 \cdot \mathrm{~cm}=\cdot / / \mathrm{m}$
$\Delta t=\cdot / \Delta \mathrm{s}$
$\mathrm{B}_{1}=+\cdot / \mathrm{Y} \wedge \mathrm{T}$
$B_{r}=-\cdot / / r T$
$\theta=$.

$$
\left\{\begin{array}{l}
|\bar{\varepsilon}|=\left|-\mathrm{N} \frac{\Delta \varphi}{\Delta \mathrm{t}}\right| \\
\varphi=\mathrm{AB} \operatorname{Cos} \theta \\
|\bar{\varepsilon}|=\left|-\mathrm{N}\left(\frac{\mathrm{~B}_{\mathrm{Y}}-\mathrm{B}_{1}}{\Delta \mathrm{t}}\right) \mathrm{A} \operatorname{Cos} \theta\right| \\
|\bar{\varepsilon}|=-1 \times\left(\frac{-/ / r-\cdot / \mathrm{r} \Lambda}{\cdot / \Delta}\right) \times \pi \times(\cdot / 1)^{r}=\wedge \pi \times 1 \cdot^{-r} \mathrm{D}
\end{array}\right.
$$

r- قطب N يـى آهنرباى ميلهاى را مطابق شكل زير از پي با استفاده از قانون لنز جهت جريان الن القايى را در پي

 را تشكيل می دهد. پِس با توجه به قانو سمـت چی گالوانومتر به قطب سمت راست آن مىباشد.

Yنسبت ضريب خود القايى آنها را مـحاسبه كنيد.

$$
\left\{\begin{array}{l}
L=k_{\mu} \cdot \frac{N^{r} A}{L} \\
N_{1}=N_{r} \\
A_{1}=A_{r} \\
k_{1}=k_{r} \\
\text { ضريب خودالقايی سول سيم لولـل } 1
\end{array}\right.
$$

ه- رابطهاى براى انرڭى ذخيره شده در يـى سيملولهى بدون هسته بر حسب ويزگى هاى سيملوله بهدسـت آوريد.

$$
\left\{\begin{array}{l}
\mathrm{L}=\mathrm{k} \mu \cdot \frac{\mathrm{~N}^{r} \mathrm{~A}}{\mathrm{~L}} \\
\mathrm{k}=1 \Rightarrow \mathrm{~L}=\mu \cdot \frac{\mathrm{N}^{r} \mathrm{~A}}{\mathrm{~L}}
\end{array}\right.
$$

اكر طرفين معادله را در H. I ضر ب كنيم، خواهيم داشت:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ U = \frac { 1 } { r } \mu \cdot \frac { N ^ { r } A } { L ^ { r } } \times I ^ { r } \times (\frac { \mu \cdot \times L } { \mu \cdot \times L }) } \\
{ B ^ { r } = \mu ^ { r } \cdot \frac { N ^ { r } I ^ { r } } { L ^ { r } } }
\end{array} \left\{U=\frac{1}{r} B^{r} A\left(\frac{L}{\mu .}\right)\right.\right. \\
& \left\{\begin{array}{l}
U=\frac{1}{r} B^{r} A\left(\frac{L}{\mu_{.}}\right) \\
V=A L \text { ح حr سيملوله } \Rightarrow U=\frac{B^{r} V}{r \mu .}
\end{array}\right.
\end{aligned}
$$

در اين رابطه B ميدان مغناطيسى و V حجم داخل سيملوله مى وباشد.

9- نمودار تغييرات شارى كه از مدار يِيجه در شكل
 دورْى چرخرخش يِيجه رسم كنيد.

V- Vمودار تغييرات نيروى مدحر كهى القا شده در ر

^- قطب شمال يكى آهنربا، مطابق شكل زير از يکى حلقهى فلزى دور مى شود، جهت جريان القايى را در حلقه مشخص

 ساعتگرد خواهد بود (از رخ بالا) .

 مغناطيسى زمين بر روى آهنربا چششمپوشیى كنيد.)

 برخورد با سطح نرم زمين به مقدار كمترى در زمين فرو میروود.
-ا- دو ميلهى رساناى موازى در صفحهای عمود بر ميدان مغناطيسى يكنواخت
 در جهت نشان داده شده در شكل به حر كت درآيد جهت القايى در مدار در چهه سويى است؟

وقتى ميله CD به طر ف پپ

 القايى از C به D مى D مباشد، زيرا ميدان مغناطيسى رو به بالا در قاب ايـجاد كرده است تا با با كاهش شار مغناطيسى مخالفت كند.

 به D مى

$\odot \odot \odot \odot$

$\odot \odot \odot \odot$

وقتى قاب را به طرف راست مى كششيم تا از ميدان مغناطيسى خارج كنيم، شار مغناطيسى عبورى از سطح قاب رو بـ به
 جهت جريان القايی در قاب پاد ساعتگراد است و ميدان مغناطيسى برونسو ايجاد مى كند تا با كاهش شار مغناطيسى مـخالفت كند.

$\Phi_{1}=$.
$\Phi_{\mathrm{Y}}=\mathrm{BACos} \theta$
$\left\{\begin{array}{l}\Phi_{Y}=\mathrm{BACos} \theta \\ \mathrm{A}=r \times \Delta=10 \mathrm{~cm}^{r}=10 \times 10^{-r} \mathrm{~m}^{r}\end{array}\right.$

و وتى قاب بهطور كامل وارد ميدان مىشود، مسافت هcm را هى مى كند و اين بازه زمانى برابر است با:
$\left\{\begin{array}{l}x=V . \Delta t \\ x=\Delta \mathrm{cm}, V=r m / s \Rightarrow \Delta t=\frac{x}{V}=\frac{\Delta \times 1 \cdot^{-r}}{r}=\cdot / \cdot r \Delta\end{array}\right.$
مدت زمانى كه طول مى كشد تا با سرعت ثابت از ميدان مغناطيسى عبور كند، از رابطه زير به دست مى آيد. $\left\{\begin{array}{l}\Delta x=V(\Delta t) \\ x=\Delta \mathrm{cm}, V=r m / s \Rightarrow \Delta t=\frac{\Delta x}{V}=\frac{\Delta \times 1 \cdot^{-r}}{r}=\cdot / \cdot r \Delta s\end{array}\right.$

 حركت مى كند شار مغناطيسى ثابت و نيروى محر كه برابر صفر خواهد بود. $\left\{\begin{array}{l}\varepsilon=\text { B.L.V. } \operatorname{Sin} \alpha \quad \alpha=. \\ \varepsilon=\frac{\pi(V)}{\varepsilon}\left(r \times\left(r \times 1 \cdot 0^{-r}\right) \times(r)=1 / r \times 1 \cdot{ }^{-r} \mathrm{~V}\right.\end{array}\right.$

الف) جريان در سيم رو به افزايش اسـت و ميدان مغناطيسى اطراف آن در حال قوى شدن است و شار شارى كه از حلقه

مغناطيسى مـخالفت كند.

 كاهش I مغناطيسى مخخالفت كند.

 Y ا أ اندازهى نيروى محر كهى القايى متوسط در پيدچه را حساب كنيد.
$N=1 \ldots$
$\theta=$.
$B_{1}=\cdot / \cdot ヶ T$
$\left\{\begin{array}{l}|\bar{\varepsilon}|=\left|-N\left(\frac{B_{Y}-B_{1}}{\Delta t}\right) \mathrm{A} \operatorname{Cos} \theta\right| \\ |\bar{\varepsilon}|=\left|-1 \cdots\left(\frac{-\cdot / \cdot \psi-\cdot / \cdot \psi}{\cdot / \cdot 1}\right) \times\left(0 \cdot \times 1 \cdot^{-\mu}\right)\right|\end{array} \Rightarrow|\bar{\varepsilon}|=\mu \cdot \mathrm{V}\right.$
$A=0 \cdot \mathrm{~cm}^{\zeta}=0 \cdot \times 10^{-Y} \mathrm{~m}^{Y}$

 هـهمان جهت قبلى ادامه خواهد داشت تا تا آثار مغناطيسى آن با با افزايش ميدان مغناطيسى در جهت منفى مخخالفت كند.

19- در شكل زير اگر سيملوله را در جهت نشان داده شده در شر شكل به حلقه نزديک كنيم جريان القايیى در حلقه در چهه جهتى است؟

 دست راست جهـت جر يان القايى را در حلقه تعيين كرد مطابق شكل مىباشد.

IV rs

$$
\begin{aligned}
& \mathrm{A}=r \cdot \mathrm{~cm}^{r}=r \cdot \times 1 \cdot^{-r} \mathrm{~m}^{r} \\
& \mathrm{~N}=1 \cdots \\
& \theta_{1}=\cdot \\
& \theta_{r}=\frac{\pi}{r} \\
& \mathrm{~B}=\cdot / \Delta \mathrm{G}=\cdot / \Delta \times 1 \cdot{ }^{-r} \mathrm{~T} \mathrm{BA}\left(\operatorname{Cos} \theta_{r}-\operatorname{Cos} \theta_{1}\right) \\
& \Delta \mathrm{t} \\
& \left\{\begin{array}{l}
\bar{\varepsilon}=-\mathrm{N} \frac{\Delta \Phi}{\Delta \mathrm{t}}=-\mathrm{N} \frac{-r}{} \\
\Delta \mathrm{t}=\cdot / \cdot \mathrm{rs} \Rightarrow \bar{\varepsilon}=-1 \cdots \times \frac{\cdot / \Delta \times 1 \cdot{ }^{-r} \times\left(r \cdot \times 1 \cdot^{-r}\right)(\cdot-1)}{\cdot / \cdot r}=\bar{\varepsilon}=v / \Delta \times 1 \cdot 0^{-r} \mathrm{~V}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon=\frac{d \varphi}{d t} \\
\varphi_{B}=\left(r t^{r}+r t-1\right) \times 10^{-r} \Rightarrow \frac{d \varphi}{d t}=(\wedge t+r) \times 10^{-r}
\end{array}\right. \\
& \left\{\begin{array}{l}
\varepsilon=(\wedge t+r) \times 10^{-r} \\
t=r s \Rightarrow \varepsilon=(\wedge \times r+r) \times 10^{-r}=1 / 9 \times 10^{-r} V
\end{array}\right.
\end{aligned}
$$

19- حلقهاى مطابق شكل زير درون يكى ميدان مغناطيسى يكنواخت قرار دارد. اگر اندازهى ميدان افزايش يابد، جهت جريان القايى را روى حلقه مشخخص كنيد.
(x) (x) (x) (x) (x) (x) (x)
$(\underset{\sim}{x})(x)(x) \quad(x) \quad(x) \quad(x) \quad(x)$
$(x) \quad(x)(x) \quad(x) \quad(x) \quad(x) \quad(x)$
$(\underset{\sim}{x})(x)(x)(x)(x)(x) \quad(x)$
$(\underset{\sim}{x})(\underset{\sim}{x})(\underset{\sim}{x})(\underset{\sim}{x})(\underset{\sim}{x})(\underset{x}{ })(\underset{\sim}{x}$

ميدان مغناطيسى درونسو و حلقه عمود بر ميدان مغناطيسى است. هر گاه مراه ميدان مغناطيسى

 جر يان القايى پادساعتگرد د مىباشد.
 دهيد.
 ابتدا زمان تناو ب را بهدست مى آوريم تا بتوانيم نمو دار جريان - زمان را رسم كنيم.
$\mathrm{I}_{\mathrm{m}}=\mathrm{r} \mathrm{A}$
$\mathrm{T}=. / \cdot \mathrm{rs}$
$\mathrm{R}=\Delta \Omega$$\quad\left\{\begin{array}{l}\omega=\frac{r \pi}{\mathrm{~T}} \\ \mathrm{~T}=/ / \cdot \mathrm{rs} \Rightarrow \omega=\frac{r \pi}{\cdot / \cdot \mathrm{r}}=1 \cdot \cdot \pi \mathrm{rad} / \mathrm{s}\end{array}\right.$

$$
\left\{\begin{array}{l}
I=I_{m} \operatorname{Sin} \omega t \\
\left.I_{m}=r A \Rightarrow I=r \operatorname{Sin}\right\lrcorner \cdots \pi t
\end{array}\right.
$$

با توجه به نمو دار و معادله شدت جريان - زمان در لحظههاى ب..

$\left\{\begin{array}{l}\operatorname{Sin} 1 \cdot \cdot \pi \mathrm{t}= \pm 1 \\ \operatorname{Sin} \frac{\pi}{r}=1 \Rightarrow 1 \cdot \cdot \pi \mathrm{t}=\frac{\pi}{r} \Rightarrow \mathrm{t}=\frac{1}{r \cdot \cdot} \mathrm{~s} \\ \operatorname{Sin} \frac{r \pi}{r}=-1 \Rightarrow 1 \cdot \cdot \pi \mathrm{t}=\frac{r \pi}{r} \Rightarrow \mathrm{t}=\frac{r}{r \cdot \cdot} \mathrm{~s}\end{array}\right.$
الr- در لحظهى t=

براى به دست آوردن شدت جريان در لحظه t C بقدار آن را در معادله شدت جريان - زمان قرار مىدهيم. $\left\{\begin{array}{l}I=r \operatorname{Sin} 1 \cdot \pi t \\ t=\frac{1}{r \cdot \cdot} s \Rightarrow I=r \operatorname{Sin} 1 \cdots \pi \times \frac{1}{r \cdot \cdot}\end{array}\right.$
$I=r \operatorname{Sin} \frac{\pi}{r} \Rightarrow I=r \times \frac{\sqrt{r}}{r}=\sqrt{r} A$

 پ) براى بهبود و افزايش دقت كار دستگاه، دو پيشنهاد ارائه دهيد.

 (اختلاف پتانسيل القايیى) با آن مخالفت مى كند.
$\varepsilon=\frac{-\mathrm{d} \varphi}{\mathrm{dt}} \quad$ ب) بله، هر چه سرعت پیرخش آهن ربا بيشتر شود، تغييرات ميدان به زمان بيشتر مى شود. پپ) استفاده از آهنزباى قوىتر و خم كردن سر هستهى آهنى به سمت آهنربا.

